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Abstract

Existing visual parsers for molecule diagrams translate pixel-based raster images such as PNGs to
chemical structure representations (e.g., SMILES). However, PDFs created by word processors includ-
ing LATEX and Word provide explicit locations and shapes for characters, lines, and polygons. We
extract symbols from born-digital PDF molecule images and then apply simple graph transformations
to capture both visual and chemical structure in editable ChemDraw files (CDXML). Our fast ( PDF
→ visual graph → chemical graph ) pipeline does not require GPUs, Optical Character Recognition
(OCR) or vectorization. We evaluate on standard benchmarks using SMILES strings, along with a
novel evaluation that provides graph-based metrics and error compilation using LgEval. The geometric
information in born-digital PDFs produces a highly accurate parser, motivating generating training
data for visual parsers that recognize from raster images, with extracted graphics, visual structure,
and chemical structure as annotations. To do this we render SMILES strings in Indigo, parse molecule
structure, and then validate recognized structure to select correct files.

Keywords: chemoinformatics, graphics extraction, graphics recognition, evaluation, data generation, PDF

1 Introduction

This work addresses a fundamental need for devel-
oping a scalable and reliable extraction and trans-
lation system for PDF-based chemical molecule
drawings. Such a system will facilitate applica-
tions such as data mining and entity linking for
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ChemScraper online tool and related system improvements.

multi-modal chemical search, along with chem-
ical search in PDF documents. A key applica-
tion is molecular search in PDF documents – in
particular, supplementary materials documenting
experiments associated with chemical papers. This
would allow chemists to query molecules in PDF
files, import retrieved molecules to chemistry-
specific tools that enable adding or modifying
sub-graphs, simulate novel reactions, etc.

Current approaches to recognizing molecule
structure generally parse images from pixel-based
raster images, and produce chemical structure
descriptions such as SMILES strings as output.
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Fig. 1: Parsing Nitrobenzene (C6H5NO2). (a)
PDF image. (b) MST over lines/characters: green
dots are nodes, red lines are edges. (c) Modi-
fied MST after updating connectivity and merging
nodes: large blue dots are merged characters and
bond lines, thick blue lines are added edges. (d)
Final graph: thick blue lines are double bonds, and
a large blue dot is a superatom group (NO2).

A number of these approaches work well, and
some include modern variations of encoder/de-
coder models that recognize structure with high
accuracy (see Section 2).

However, many modern documents are pro-
duced using word processors that utilize vector
representations to depict molecules. These repre-
sentations encode diagrams as characters, lines,
and other graphic primitives. We wish to use
PDF drawing instructions directly as input to
produce fast, accurate methods for converting
molecule images at scale. We were motivated to
use PDF drawing instructions directly by earlier
math formula recognition work by Baker et al. [1].

In the early part of Section 4 we describe our
improved SymbolScraper[36] that extracts PDF
drawing instructions without the need for con-
sulting rendered pages images. Later in Section 4
we describe the ChemScraper born-digital parser,
which is both fast and simple in its design1.
As illustrated in Figure 1, starting from PDF
graphical primitives, a Minimum Spanning Tree
(MST) is then built over these primitives to
capture two-dimensional neighbor relationships

1Code and tools from this paper are publicly available: https:
//gitlab.com/dprl/graphics-extraction/-/tree/icdar2024

(i.e., visual structure). Graphical primitives in
the MST are tokenized/merged into molecule
elements such as atom/superatom names and
double/triple or wedge/hash bonds. Graph trans-
formations using geometric features and simple
chemical constraints augment and correct the tok-
enized MST into a final graph that represents the
molecular structure.

We also use ChemScraper’s parser to gener-
ate fine-grained annotated data for visual parsers,
with primitive-level annotations for all graphical
primitives, atoms, and bonds (see Section 5). The
parser is also one component in the online Chem-
Scraper molecule extraction tool2, which includes
a YOLOv8[43]-based diagram detection module
not described in this paper.

We represent recognized visual structure and
molecular structure in ChemDraw’s CDXML for-
mat3[26], which combines visual appearance with
semantic annotations. CDXML can also be trans-
lated to standard chemoinformatics formats such
as SMILES and MOL (see Section 3 for details).
In Section 6, we use the translations to evalu-
ate our model using three different representa-
tions: SMILES strings, molecular fingerprints, and
labeled directed graphs. The use of direct compar-
isons of labeled graphs over PDF drawing primi-
tives is a contribution of this paper; it allows direct
comparison of graphical structures, and automatic
and exhaustive compilation of structure recogni-
tion errors. In addition, we report some differences
that are missed in the SMILES strings commonly
use to evaluate molecular diagram parsers.

In the next Section, we begin with an overview
of related work in chemical structure recognition.

2 Related Work

We provide below a summary of work in Chemical
Structure Recognition (CSR), and contrast and
compare this work with the ChemScraper born-
digital parser presented in this paper.

Chemical structure recognition from hetero-
geneous scientific documents (containing text,
images, charts, and tables) requires locating the
region of the page where a 2D molecule diagram
is drawn and then parsing the localized structure

2https://chemscraper.frontend.staging.mmli1.ncsa.illinois.
edu/configuration

3https://revvitysignals.com/products/research/chemdraw
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into a machine-readable form for further use (e.g.,
in search applications). While most systems focus
on parsing the structure of individual molecules
into common string representations like SMILES,
DeepSMILES [27], InChI or SELFIES [17], some
recent works also try to address localizing dia-
grams in documents, including YOLOv8, an
updated version of Scaled YOLOv4 [43] with per-
formance and efficiency enhancements. There are
numerous standard datasets, including USPTO,
CLEF, UOB, to benchmark parsing individual
molecules, which is the focus of this paper.

In the following sections, we discuss tradi-
tional rules-based systems, neural-based systems,
followed by systems that are rule- or neural-based,
but generate molecular structures as explicit
graphs rather than strings (e.g., in SMILES).

2.1 Rule-Based

The earliest structure parsing system for chemical
diagrams in printed documents, which we know,
was a rule-based approach by Ray et al. in the late
1950’s [31]. This approach first enumerated atoms,
and then the connections between atoms were
established from molecule regions in scanned doc-
ument images. Special chemical compound rules
based on the number of connections for each atom
were used to determine the type of bond between
atoms. While this system worked well for common
compounds, the rules were complex and worked
for a limited set of compounds.

An important later development was the cre-
ation of the Kekulé system [22]. The main dif-
ferences between Kekulé and Ray et al.’s system
were additional pre-processing steps and the visual
detection of bond types. Kekulé used thinning
and vectorization of raster scans to eliminate sub-
tle variations in bond lines and characters and
ensured that a consistent set of characters and
lines were recovered. Once a connection between a
pair of atoms was established, their system visu-
ally detected their bond type instead of using
chemical rules as Ray et al. did.

Ibison et al. developed CLiDE, [14] which also
detected atoms and then connected them with
bonds. CLiDE detects fewer bond types other than
single, double, or triple such as solid and dashed
wedge bonds that illustrate 3-dimensional struc-
ture for bonds (e.g., indicating that structure lies

behind or in front of the page). Connected com-
ponent analysis was used in disconnected bond
groups to identify bond types, and OCR was used
to identify atoms (characters). The final adjacency
matrix for the molecular structure was created
similar to Kekulé. Another system by Comelli et
al. [5], used additional processing steps to identify
charges as subscripts or superscripts attached to
atoms.

A still-popular open-source system that
extends the rules of CLiDE and Kekulé to
improve performance is OSRA by Filipov et al.
[7]. Their system uses methods similar to previ-
ous approaches but was refined to process images
for born-digital documents which had well-defined
encoded text lines, characters, and graphics. A
similar system was MolRec [33], which used hor-
izontal and vertical grouping to detect connected
atoms, their charge, and stereochemical informa-
tion. The system had some failures for molecules
that use arcane representations of common bond
types or complex structures including those with
stereochemical information (e.g., isomerism). The
CSR system developed by Bukhari et al. is a
recent work that still uses rule-based graphical
processing to output SMILES representations for
molecules. However, they use a chemical naming
toolkit, OpenBabel [28] to generate the correct
connectivity table.

ChemScraper is also a rule-based system, with
a series of graph transformation rules, using the
geometry of characters and graphical objects,
along with chemical constraints (e.g., neighboring
parallel lines often represent double, triple, or hash
bonds). However, unlike many previous systems, it
does not rely on image processing, visual features,
or OCR. Instead, it leverages PDF instructions,
resulting in faster processing with less uncertainty
(e.g., line and character locations and geomet-
ric properties are known before parsing). With
this reduced uncertainty, ChemScraper’s rules are
robust and can handle complex structures.

2.2 Neural-Network Based

Recent advances in neural networks have shown
promise in detecting and parsing chemical dia-
grams.

Sun et al. [40] used a single pass feedfor-
ward convolutional network to extract chemical
diagrams from documents. To address the issues

3



of scale and size of diagrams, they used Spa-
tial Pyramidal Pooling (SPP) [11]. This made
their approach perform better than other popular
object detection networks like Faster R-CNN and
SSD, which were designed for images in the wild.
Staker et al. [39] used an entirely neural approach
to extract figures from documents and convert
them into a SMILES representation. For diagram
extraction, they used a U-Net [32] to segment the
figures. The segmented figures were then passed
through an attention-based encoder network [42]
to predict the SMILES string.

Some neural systems focus on parsing chemi-
cal diagrams exclusively. DECIMER by Rajan et.
al [30] follows a similar encoder-decoder approach,
taking features extracted from a bitmap image of
a molecule from an encoder and passing it through
a decoder. The main difference is the structure
of the outputs generated, as they used SMILES,
DeepSMILES, and SELFIES. They found that
SELFIES performed much better because of
additional information encoded within them vs.
SMILES strings.

Additional encoder-decoder parsing models
include IMG2SMI by Campos et al. [2]. Instead
of using the molecule image as an input to the
encoder transformer, a Resnet-101 [10] backbone
was used to extract image features that were then
passed on to the encoder stage. The BMS (Bristol–
Myers–Squibb) dataset [16] released by Kaggle
provided one of the few datasets for a general base-
line for the conversion of molecule images to InChI
(International Chemical Identifier names). Li et al.
[19] modified a TNT vision transformer encoder
[8] by adding an additional decoder. This attempt
at using a vision transformer was enabled due to
the training dataset containing 4 million molecule
images. Likewise, SwinOCSR by Xu et al. [46] use
the Swin transformer to encode image features and
another transformer-based decoder to generate
DeepSMILES. They focus on the improvements
due to the backbone (Swin transformer) and use
focal loss to address the token imbalance problem
in text representations of molecular diagrams.

Most current neural-based methods encode
visual features using an encoder, and then decode
these embedded representations into strings (e.g.,
SMILES or DeepSMILES) that do not correspond
naturally to molecular structures. These string

representations lack direct geometric representa-
tion between input objects (e.g., atoms and bonds)
and the output strings, and require extensive
training data [23].

In contrast, ChemScraper is designed to rec-
ognize structure and create annotated molecular
images using the Indigo Toolkit, with additional
primitive-level annotations from Symbol Scraper
[36] and their visual as well as chemical structure.
These additional annotations include labels and
positions of characters, which are integral parts
of atom groups, even if not directly linked to the
main bond (e.g., H and 3 in CH3). Datasets gener-
ated by ChemScraper’s born-digital parser will be
helpful for fine-grained training of visual parsers
that consider these connections between input
locations and output structure representation dur-
ing training and recognition (e.g., the LGAP [37]
parser, a visual parser originally designed for
parsing mathematical formulas).

2.3 Graph Decoders and
Graph-Structured Outputs

In recent years, novel molecular diagram parsing
methods have emerged that combine rule-based
and neural-based approaches and generate graph
representations as outputs, rather than string
representations such as SMILES. These methods
often employ a graph decoder or a graph construc-
tion algorithm to create graph-based outputs.
These outputs usually represent a supergraph of
atoms and bonds or serve as an intermediate
representation of the final graph structure.

MolScribe [29] employs a SWIN transformer
to encode molecular images and a graph decoder,
which consists of a 6-layer transformer, to jointly
predict atoms, bonds, and layouts, yielding a 2D
molecular graph structure. They also incorpo-
rate rule-based constraints to determine chiral-
ity (i.e., 3d topology) and design algorithms to
expand abbreviated structures. MolGrapher [23]
is another noteworthy method employing a graph-
based output representation. It utilizes a ResNet-
18 backbone to locate atoms, and constructs
a supergraph incorporating all feasible atoms
and bonds as nodes while imposing specific con-
straints. Subsequently, a Graph Neural Network
(GNN) is applied to the supergraph, accompanied
by external Optical Character Recognition (OCR)
for node classification. Both these systems utilize
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multiple data augmentation strategies, includ-
ing diverse rendering parameters, such as font,
bond width, bond length, and random transforma-
tions of atom groups, bonds, abbreviations, and
R-groups to bolster model robustness.

Likewise, Yoo et al. [47] and OCMR [44] pro-
duce graph-based outputs directly from molecular
images. Yoo et al. [47] leverage a ResNet-34 back-
bone, followed by a Transformer encoder equipped
with auxiliary atom number and label classifiers.
Their model includes a transformer graph decoder
with self-attention mechanisms for edges. On the
other hand, Wang et al. [44] employ multiple neu-
ral network models for different parsing steps.
These steps include key-point detection, char-
acter detection, abbreviation recognition, atomic
group reconstruction, atom and bond prediction.
A graph construction algorithm is subsequently
applied to the outputs.

These graph-based methods present excit-
ing alternatives, offering improved interpretability
and robustness while representing chemical struc-
tures naturally. Utilizing a graph output structure,
as opposed to traditional SMILES strings, offers
enhanced interpretability. Atom-level alignment
with input images facilitates easy examination,
geometric reasoning, and correction of predicted
results.

As a result, ChemScraper uses graph represen-
tations for output. Unlike MolScribe [29], which
initially converts a molecular graph to a MOL
file, ChemScraper introduces a novel visual graph
→ CDXML converter, that encodes both physical
locations as well as chemical information for one or
more molecules. CDXML provides the flexibility
to be directly used in many downstream tasks by
chemists, read in ChemDraw-like tools as well as
for conversion to other formats such as SMILES,
MOL, and InChI [12, 13]. It is essential to again
note that ChemScraper does not rely on OCR
or other neural networks to recognize keypoints,
characters or bond types.

The systems commonly used for molecule
and reaction parsing system comparison base-
lines are OSRA, DECIMER (described above),
and the reaction extraction work done by Lowe
[20]. However, it should be noted that reaction
extraction work by Lowe was done by tagging
text-based reaction XML files from exclusively
USPTO patents and converting IUPAC [38] names

to SMILES. This involved classifying text into
reactants and products.

3 Molecular Representations

Specialized molecular representations broadly
enable various aspects of cheminformatics,
information modeling, and cross-representation
between formats. For instance, it enables a com-
mon representation and translation between
molecule figures and their corresponding text-
based IUPAC [38] (International Union of Pure
and Applied Chemistry) name. Some of the most
common text-based specialized representation
formats are SMILES (Simplified Molecular-Input
Line-Entry System) [45], InChI (International
Chemical Identifier) [12, 13], and SELFIES
(SELF-referencIng Embedded Strings) [17]. While
these formats do not encode the precise layout
of the molecule in 2D or 3D space, parsers (e.g.,
RDKit [18], Marvin molconvert [4], and OpenBa-
bel [28]) for these formats have builtin knowledge
to convert these representations using spatial
geometry.

Representations that explicitly encode 3D
geometry for atoms and their bond types include
MOL (molecular data) file and an XYZ file (e.g.,
as used in Avogadro [9]). These explicitly capture
the arrangement of carbon atoms with respect to
each other, and the spatial arrangement of atoms
often impacts the property of a molecule. For
example, in a chiral molecule with a stereogenic
carbon, the orientation of atoms around this car-
bon will result in a specific stereoisomer. In a 2D
representation of this molecule, atoms connected
to this carbon will be either on the plane, coming
out of the plane (solid wedge bond), or going into
the plane (hashed wedge bond).

Furthermore, a detailed understanding of the
CDXML file format is essential for encoding visual
graphs produced by the ChemScraper born-digital
parser. The sections below summarize ChemDraw
XML file contents, SMILES encodings and labeled
graph (lg) representation. This has been used for
evaluating math formula recognition tasks using
the LgEval library [24, 25] and we use it for
evaluation in this paper.
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3.1 ChemDraw (CDXML) Files

CDXML is an XML encoding that captures how
a molecule or a group of molecules are chemically
structured, and their appearance on a 2D can-
vas. This format was created for the ChemDraw
chemical diagram editor [15]. CDXML reading
tools can modify structures at the molecule, sub–
atom or sub–group level as needed. 3D properties
such as stereogenic carbons are identified by tag
attributes.

After the <CDXML/> and <page/> headers,
every molecule is embedded in a <fragment/>

tag, with individual atoms are represented in
<n/> (node) tags, that include the atomic num-
ber for atoms. In some cases, multiple atoms are
abbreviated in a drawing such as Et which cor-
responds to a CH3CH2 (Ehtyl) group, or Me for
a CH3 (Methyl) group, represented using nested
<fragment/> tags associated with a node (<n/>)
tag that defines the structure of the molecule
represented by the abbreviation. Where a sub-
group of atoms are not chemically interpretable,
CDXML encodes it as a node of unknown type
using the NodeType attribute.

Bonds tags <b/> identify the nodes acting as
the bond start and end points, referenced using
node identifiers. Wedge bonds for chiral carbons
contain an additional Display attribute to signify
the start or end of a chiral bond.

Brackets are encoded outside a fragment.
Using separate tags to represent the brackets (
<graphic/>) and the molecule sub-structure that
lies within the brackets (<bracketedgroup/>.
These are commonly used to represent Markush
structures, which indicate repetitions for part of a
molecule (e.g., a carbon chain).

3.2 SMILES Strings

Simplified Molecular-Input Line-Entry System or
SMILES [45] is widely used in cheminformatics
owing to its linear structure, compactness, and
easy human readability for domain experts. Atoms
are written in an order following a traversal of
a chemical structure table (i.e., the adjacency
matrix over atoms/atom groups). To translate
CDXML to SMILES, the molecule table is gen-
erated by reading all the nodes and bonds for
a <fragment/> and the conversion tool uses an
internal heuristic to order atoms based on the spa-
tial positions of the nodes available in a CDXML.

Single, double, and triple bonds are denoted
by the symbols −, = and # respectively. Single
bonds and hydrogen atoms are generally omit-
ted for clarity in the SMILES. Ethane (CH2H6)
can be either written as C-C or CC. SMILES can
encode additional properties such as aromaticity
[34] and chirality. For instance, the SMILES for
benzene (C6H6) is commonly written as c1ccccc1
which. It is important to note that canonical-
ization is molecule and compound-specific, and
different toolkits can have different ways of ver-
ifying if a given SMILES is canonical or not –
in other words, canonical SMILES is not in fact
’normalized’ or universal. One possible ‘canonical’
form (using RDKit) is C1=CC=CC=C1. The begin-
ning and final C1 signifies a closed loop around the
molecule, i.e., a ring.

Although SMILES is generally reliable, it does
not protect against invalid strings, i.e. not every
combination of characters and symbols is a chem-
ically valid molecule. This is not an issue when
translation is done using off-the-shelf toolkits for
valid CDXMLs; for invalid CDXML structures,
SMILES strings may be invalid molecules.

3.3 Label Graph (Lg) Files

Labeled directed graphs, represented using ‘label
graph’ files (.lg) are a widely adopted represen-
tation for training and evaluating the recognition
of mathematical formulas. This format finds util-
ity in various applications and is integrated into
the LgEval library [24, 25]. Open-source tools,
along with detailed file format specifications and
tool usage guidelines are accessible to the research
community4.

Our labeled graphs have labels on both nodes
and edges. These labels convey the organization
of input primitives into objects and their relation-
ships. Within the ‘object-relationship’ (OR) label
graph file format, each object is defined by a label
and associated list of primitive identifiers. These
identifiers correspond to the set of individual ele-
ments within an object. In the case of a chemical
bond object, this may represent the lines forming
a bond, along with the bond type. Similarly, for
atom groups, primitives may represent individual
characters within the group.

4https://gitlab.com/dprl/lgeval
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Most commonly, the OR format is used to define
labeled edges between objects rather than individ-
ual primitives, although this effectively provides
a more compact description of a graph defined
at the primitive level (expressible in the node-
edge (NE) format). These labeled edges encapsu-
late the structural relationships between objects
and primitives, enabling fine-grained analysis and
evaluation.

In the context of molecule diagram parsing, the
choice of relationship labels depends on whether
bonds are represented as edges or nodes in the
graph. In our visual graph molecule representa-
tion, bond lines are represented using nodes. In
this case, edges could be labeled as CONNECTED,
CONCATENATED, and ABSENT, signifying the rela-
tionship between bonded atoms/atom groups or
concatenating atomic characters within an atom
group. In the final chemical structure graph, the
bond lines are replaced by edges in the graph rep-
resenting chemical bonds between atom nodes. In
this case, relationship labels denote bond types
such as Single, Double, Triple, Solid Wedge,
and Hashed Wedge. These labels are used to char-
acterize the chemical nature of bonds within the
molecular structure.

Label graphs, as a representation format, are
quite general. While they are prominently used
in the context of mathematical formula recogni-
tion, their applicability extends to various other
problem domains as well. These graphs support
representing and evaluating structural similarity
in a diverse range of applications. Consequently,
in our work the label graph representation serves a
dual purpose: firstly, in generating annotated data
for the visual parser (as detailed in Section 5),
and secondly, for calculating graph-based eval-
uation metrics to assess the parsing results of
ChemScraper (explored in Section 6.3).

4 Parsing Algorithm

In this section, we present our ChemScraper
born-digital parser for recognizing the structure
of molecular diagrams from PDF images. This
includes extracting characters and graphics from
PDF using Symbol Scraper [36] to produce the
parser inputs, and then use graph transformations
to produce a visual and then chemical representa-
tion of the molecule.

Character/Graphics Extraction:
SymbolScraper

SymbolScraper is a PDF-graphics extraction sys-
tem [36] for reading drawn shapes and characters
in their writing line order from instructions in
PDF files, ignoring embedded images. This is
made possible by identifying and extracting char-
acter glyphs (shapes) embedded in font profiles,
and instructions for drawing objects, such as lines
and polygons. These glyphs and shape drawing
commands contain information on how a graph-
ics object is drawn and where on a PDF canvas.
Additionally, font profiles contain the symbol label
embedded as a Unicode, helping identify charac-
ter labels (e.g., a specific letter or number) and
drawing command types (e.g., to identify whether
straight line segments or a curve are drawn).

Each graphic object in a PDF file is delim-
ited by an ‘end-graphic’ command, and formed
by a sequence of drawing instructions. In PDF,
the structure of graphics is given primarily by the
drawing instructions for line, rectangle and curve.
We take these instructions as the primitives of
our graphical objects. We extract information on
primitives including points, line width, whether
they are filled, etc. We add additional information
to support parsing later on, including translating
the primitives to a topological space using the Java
Topology Suite5, in which we represent objects as
line strings. From line strings, we can easily com-
pute angles and lengths for lines. For curves, which
are represented as a sequence of Bezier points
in PDF, we approximate them to a sequence of
lines (line string) based on the distance between
the farthest point in the original curve, and the
segment in the approximation.

Sometimes regular bonds in molecule diagrams
are drawn as a filled polygon – to handle this we
approximate these objects as lines; this is made
by checking if the sum of the 2 longest segments
of the geometry object correspond to more than
90% of the total perimeter of the polygon. All
this information, along with characters, bounding
boxes and more is written into a JSON file used by
the ChemScraper parser, but SymbolScraper may
also be used for other applications.

Listing 1 shows the raw PDF instructions for
the leftmost line in the Propane molecule diagram

5https://locationtech.github.io/jts/
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C C

Fig. 2: Propane (C3H8) molecule, with implicit
hydrogens (H). The bond line intersection at the
bottom represents a Carbon (C).

Listing 1: PDF instructions for leftmost line in
Fig. 2. cm denotes a context matrix defining affine
transformations for subsequent graphic objects. m
moves the cursor to a point. l draws a line from
the cursor to the specified point.

...

1 0 0 -1 0 75 cm

45.926 36.102 m

106.832 71.266 l

...

Listing 2: JSON excerpt showing SymbolScraper
output for the leftmost line of Fig. 2.

...

{
"typeFromPDF": "line",

"graphicObjectID": 0,

"length": 70.32814383876341,

"angle": 330.00006986692745,

"lineWidth": 3.333334,

"points": [

{"x": 44.48262170992254,

"y": 39.73133054974975},
{"x": 108.27537771024348,

"y": 2.9006694197326697}
]

},
...

of Fig. 2. Such instructions are in postfix notations
and processed in a stack-based way. Note that the
coordinates in the JSON file output at Listing 2
do not match the coordinates at Listing 1, this is
because the actual endpoints of a line depend on
factors such as its thickness or the previous con-
text matrices (which are processed cumulatively
as instructions are read).

Parsing Model Parameters

Parameters used in the graph transformations of
the parser (Steps 1(a) – 1(f) in Fig. 3) are detailed
in Table 1. In our work we tune these parameters
using grid search over a training dataset, described
later in Section 6.

In the remainder of this section, we describe
the graph transformations used in the parsing
algorithm to produce first a visual graph, and then
a chemical structure graph.

.

Input: PDF character/graphic locations (JSON)
Output: Editable molecular diagram (CDXML)

1. Create Visual Graph

(a) Tokenize characters, lines, and shapes using
PDF character and shape information

(b) Construct Minimum Spanning Tree (MST)
(c) Detect negative charges from MST context
(d) Add missing edges for touching objects,

floating parallel lines and character/line con-
nections. Remove edges for ‘floating’ objects

(e) Merge characters into superatom names
(f) Merge neighboring parallel lines
(g) Correct bond structures in visual graph
(h) Merge matching brackets

2. Translate Visual to Molecular Graph

(a) Convert line intersections into carbons
(b) Convert visual to molecular graph

(nodes: atoms/superatoms, edges: bonds)
(c) Identify nodes in bracketed structures
(d) Generate CDXML from final graph

Fig. 3: Overview of Parsing Steps. A series
of graph transformations convert characters and
graphic locations/shapes into a molecular graph.

4.1 Tokenization

After obtaining characters and graphic objects as
input primitives from SymbolScraper the Shapely
library6 is used to represent characters by their
labels and bounding boxes, and the remaining
graphic objects as either polygons or polylines
(represented as LineString in Shapely).

After this, the following tokenization rules are
used to label and group primitives by token type.
Please note that the hashed wedge bonds below
can only be identified if they are defined explicitly
as a graphical object in PDF (e.g., from Indigo),
otherwise, they are identified in later processing.

• Character: identifed by SymbolScraper.
• Line: as identified by Symbol Scraper.
• Positive Charge (+): i) graphic object in
JSON consists of 2 or more lines, ii) must
be a filled polygon, iii) lines are approx-
imately perpendicular with a tolerance of
PERPENDICULAR TOLERANCE.

• Solid Wedge Bond: i) graphic object con-
sists of 3 or more lines, ii) is a filled and a
closed polygon, iii) two longest lines must be

6https://github.com/shapely/shapely
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Table 1: Parameters for Graph Transformations in ChemScraper. Highlights all parameters for creating
visual graph from PDF character/graphics (See Fig. 3)

Parsing Stages from Fig. 3

Parameters (defaults) 1(a)
Tok-
enize

1(b)
Create
MST

1(c)
Neg-
ative

1(d)
Close
MST

1(e)
Merge
chars

1(f)
Merge

parallel

LONGEST LENGTHS DIFF TOLERANCE (0.1)

SOLID WEDGE MIN AREA (50.0)

PARALLEL TOLERANCE (5.0)

PERPENDICULAR TOLERANCE (1.0)

COS PRUNE (0.15)

NEG CHARGE Y POSITION (0.3)

NEG CHARGE LENGTH TOLERANCE (0.5)

STRAIGHT TOLERANCE (20.0)

CLOSE NONPARALLEL ALPHA (1.8)

CLOSE CHAR LINE ALPHA (1.5)

Z TOLERANCE (1.6)

REMOVE ALPHA (2.6)

approximately equal in length with a toler-
ance of LONGEST LENGTHS DIFF TOLERANCE,
iv) the minimum area must be less than
SOLID WEDGE MIN AREA

• Hashed Wedge Bond: i) graphic object
must consist of 3 or more lines, ii) must
not be a filled polygon, iii) all lines must
be approximately parallel with a tolerance
of PARALLEL TOLERANCE degrees. iv) all line
lengths must be in increasing or decreasing
order.

• Left and Right Parentheses: i) graphic
object must be a curve, ii) curve direction
determines if it is a left or a right parenthesis.

• Waves: i) graphic object must be a list of
curves, ii) must have a set of only 1 or 2 curve
directions, iii) the polyline approximating the
curve must not be closed.

• Circles: i) graphic object must be a list of
curves, ii) must have a set of more than 2
curve directions, iii) the polyline approximat-
ing the curve must be closed.

4.2 Minimum Spanning Tree

After SymbolScraper characters and graphics
objects have been tokenized, we compute a com-
plete graph over all pairs of primitives and then
extract a Minimum Spanning Tree (MST).

Seeding the Distance Matrix. Edge
weights in the complete graph are defined by
either (1) for pairs of lines, their minimum end-
point distance, and (2) otherwise, the closest
pair of points between two primitives. For lines,
using the minimum end-point distances has the

benefit of avoiding a distance of 0 between over-
lapping bond lines that are not connected. We
also prevent invalid character merges by assign-
ing an infinite distance between characters lying
in a roughly superscript or subscript relationship.
This is estimated using a limit on the minimum
and maximum absolute values that the cosine
between two characters center points may take
(e.g., accepting angle cosine magnitudes between
0 and 0.15, and 0.85 and 1.0, and treating all other
angles as having infinite distance).

MST extraction. Previously, MSTs have
been used to recognize the structure of handwrit-
ten and typeset math formulas (early examples
include Matsakis [21] and Eto and Suzuki [6]).
However, typeset chemical diagrams seem even
better suited to this technique than math formu-
las, as neighboring objects are generally grouped
or associated with one another, and often touch
(e.g., for bond lines between hidden carbons).

We use standard spanning tree algorithms to
construct our MST, such as Prim’s or Kruskal’s
algorithm to capture these neighbor relationships.
While the MST captures many relationships that
are already part of the final chemical structure
graph that we will produce, MSTs do not con-
tain cycles, so connections that close benzene rings
or show that multiple lines intersect each other
are missing. An MST gives a structure connecting
every primitive; however, sometimes the molecule
may have a ‘floating’ structure that is separate
from the main molecule (e.g., an ion). Named
groups (e.g., NO2) are often separated into a
connected chain of individual characters.

In the MST, structures such as brackets and
multi-line bonds (double, triple, hashed wedge)
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are also split into their component graphic objects.
As a result, finding ‘hidden’ carbons from the line
intersections using the raw MST may cause extra
carbons to be identified or some carbons to be
missed, resulting in an erroneous final graph.

Therefore, it is important to transform the
MST so that it contains the correct atom/super-
atom labels and bond structures before generat-
ing the final chemical graph representation. We
describe these transformations next.

4.3 Transforming Visual Structure
to Chemical Structure

We perform a series of graph transformations on
the MST that use geometric features from object-
s/node, as well as simple chemical constraints
(e.g., a double bond is represented by 2 parallel
lines). The sequence of steps are described below.

Adding and Removing Edges from the MST

The MST initially contains both spurious and
missing edges, necessitating correction. For exam-
ple, surplus edges may link ‘floating’ structures
to the main graph, while edges are often miss-
ing at multi-line intersections, within closed rings,
and floating double bond lines not connected with
their paired line.

First, we address absent parallel line pairs
(e.g., in double bonds) by leveraging MST infor-
mation. Floating lines (degree 1 in MST, non-
intersecting), parallel to another line are identi-
fied. A candidate is chosen to pair with a floating
bond line if it is adjacent to the floating line
(i.e., a perpendicular through the mid-point of the
floating line crosses both lines), is among the 5-
nearest neighbors of the floating line (there can be
a maximum of 4 lines around a multi-line bond),
and an average difference between the line-to-
line end-point distances between the floating line
and candidate parallel line smaller than that of
between floating line and its currently connected
line. The floating line is then disconnected from
its current neighbor, and linked to the selected
parallel line.

To close non-parallel line pairs (e.g.,
multi-line intersections, closed rings) a dis-
tance threshold, computed as a multiple of
CLOSE NONPARALLEL ALPHA and the maximum
distance between non-parallel line pairs in
the updated graph facilitates connecting pairs

of lines below this threshold distance. Con-
necting character-line pairs involves a similar
approach, using a distance threshold, with an
additional step to filter outliers. A statisti-
cal method removes distances falling outside
Z TOLERANCE standard deviations (Z-score). Miss-
ing character-line edges are then added by a
similar distance threshold, computed as a multi-
ple of CLOSE CHAR LINE ALPHA, and a maximum
distance of the character line pairs in the graph
excluding the outliers.

To remove floating atom connections from the
main graph, a multiple of REMOVE ALPHA of the
distance threshold for closing character line pairs,
parallel line pairs, or non-parallel line pairs is
applied, prioritized based on availability in the
stated order.

Merging Character Groups

We assume all characters connected in an MST
represent a named structure. If characters are
separated by a graphical object, then they are
assumed to not have a relation.

We first need to identify negative charges:
they are generally represented as lines, but need
to be merged with its parent atom character.
They need to satisfy specific conditions: first,
they need to be detected as lines by Symbol-
Scraper. Additionally, the angle formed by these
lines must be close to zero degrees, and they
should be attached to the top-right position of
a character in the MST, i.e. the vertical posi-
tion of the line must be higher than it’s parent
atom centroid by at least NEG CHARGE Y POSITION

percentage of the parent’s height. To distinguish
negative charges from single or double bond
lines at the top-right position of an atom, we
impose an additional constraint that the length
of the negative charge line should be less than
NEG CHARGE LENGTH TOLERANCE percentage of the
mean length of all the bond lines.

Next, character groups are determined by cre-
ating sub-graphs that exclude graphical objects.
The connected components of the resulting graph
define character groups. These connected compo-
nents are merged and relabeled by the complete
character group as read left to right in the graph
traversal order of the connected component char-
acters in the MST. When these characters are
merged and relabeled, the position of the entire
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group is automatically changed to the position of
the main atom connected to the graph. This posi-
tion is relabeled to be the position of the character
that is closest to one of the group’s neighbors.
If a character group has no neighbor, then it is
declared as a ‘floating’ node that is not a part of
the main molecule, and its position is left alone.

Merging Parallel Lines

Double bonds, triple bonds, and hashed wedges
are represented by parallel lines in the MST that
need to be merged. All parallel neighboring line
pairs in the updated MST are merged into the
same bond. These merged lines are relabeled using
the number of lines merged, which determines the
specific type of bond. In order to differentiate if
lines are actually part of the same bond group-
ing or are colinear, the angle between the base
parallel line and the comparison line formed from
the midpoints of the two parallel lines is deter-
mined. This can be seen in Fig. 4 (a) and (b).
When the calculated angle is perpendicular, the
two lines are part of the same bond (as shown in
Fig. 4 (a)). On the other hand, the angle will be
a straight angle or close to zero, compared using
STRAIGHT TOLERANCE when the lines are colinear
(as shown in Fig. 4 (b)).

Identifying/Updating Bond Types

After parallel lines are merged, bond types can
be identified using graphic shapes and parallel
line groups. This determination is necessary for
bonds which were unable to be determined in
the tokenization stage. Solid wedge bonds, wavy
bonds, hashed wedge bonds are most likely to
be already determined at the previous stage. In
case of hashed wedge bonds, there could be cases
where it was not determined if the list of par-
allel lines was extracted as separate individual
graphic objects by SymbolScraper instead of a sin-
gle grouped object with multiple lines. These bond
types, including the missed hashed wedge bonds
are identified using the parallel line groups formed
earlier using the following simple rules:

• Single bond: a single line
• Double bond: two merged parallel lines
• Either Triple or Hashed wedge bond: three
merged parallel lines

• Hashed wedge bond: a line with more than
three merged parallel lines

Fig. 4: Bonds for Adjacent Parallel Lines. (a) con-
tains five lines: three for a triple bond, plus two
single bonds at the triple bond ends. Here bond
membership is determined using a line between
the outermost parallel line midpoints, and the par-
allel lines’ direction. (a) right angle: lines in same
double or triple bond. (b) 0-degree difference: sep-
arate bonds. To differentiate 3 parallel lines as
a hashed wedge or triple bond, a line is formed
through the midpoints of the parallel line end-
points, and one neighbor’s closest endpoint. (c)
right angle: hashed wedge bond. (d) 0-degree dif-
ference: triple bond.

To distinguish hashed wedge bonds from triple
bonds, we apply the logic illustrated in Fig. 4
(c) and (d). The comparison line is formed from
a random neighbor’s closest point to the merged
parallel line and its midpoint. The angle between
the comparison line and the merged parallel line
is perpendicular for lines forming a hashed wedge,
and a straight angle or close to zero degrees for
a triple bond. A hashed wedge will always have
a neighbor since it is used to declare a bond’s
three-dimensional position relative to other bonds.
Therefore, if there are no neighbors, then the line
cannot be a hashed wedge and is declared as a
triple bond. This is the case where the molecule is
carbon triple-bonded to carbon.

Wedge bonds have a shorter side that begins
the bond and a longer side that ends the bond,
showing the direction of the bond. A solid wedge
bond represents this using a trapezoid. A hashed
wedge bond represents this through parallel lines
of increasing length. Unlike the other bond types,
we cannot use the default endpoints. The begin-
ning of a solid wedge bond is identified by the
shortest line in the trapezoid. The opposite side is
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the end of the bond. For a hashed wedge bond, the
shortest line in the group is the beginning of the
bond, and the longest line in the group is the end
of the bond. The midpoints of the two identified
lines are used as the bond’s actual endpoints.

Merging Brackets

The MST already includes nodes with bracket
labels. However, the opening bracket and the clos-
ing bracket are identified as two separate nodes.
The opening and closing brackets constituting a
pair need to be merged into a single node. There
is no guarantee that there is only one bracket pair,
and opening and closing brackets are not explicitly
identified, so pairs are identified through position-
ing. Bracket nodes are arranged in a list sorted
by increasing x-coordinates. This ensures that the
initial items in the list correspond to opening
brackets, while subsequent items represent closing
brackets. Subsequently, bracket pairs are identi-
fied by their y-coordinates, assuming that bracket
pairs are situated at the same height. These iden-
tified bracket pairs are then merged into a unified
node.

After merging, the neighbors of the combined
bracket node are sorted into three groups: bracket
annotations (characters outside the bracket pro-
viding extra information, such as repeat count,
assumed to be located at the bottom right of the
closing bracket), nodes inside the bracket (fully
contained in the bracket’s bounding box), and
crossing bonds (lines neigther inside nor outside
but ‘touching’ the brackets). Annotations merge
with the bracket pair node, while inside nodes and
crossing bonds are later used to identify all nodes
inside the bracket.

Connecting Bond Node Endpoints

At this stage, the MST lacks recognition of actual
line intersection points, including those with char-
acters, which are crucial for identifying atoms
within the molecule. While edges indicate inter-
secting lines, they don’t provide position details
or identify where the line endpoints intersect.
This becomes more complex when more than two
lines intersect, a scenario not evident from the
edges alone. A solution involves relabeling inter-
secting line endpoints to share the same position,
establishing a common intersection point for those

Fig. 5: Finding Bracketed Structures. (a) Visual
graph (b) Molecular graph (c) Edges crossing
brackets removed; orange dots indicate atoms/su-
peratoms of the bracketed subgraph.

endpoints. This ensures that intersecting line end-
points are perceived as the same ’hidden’ carbon
or named group, rather than distinct entities.

To acquire this information, we start by anno-
tating the intersection points of all edges. The
intersection point between two lines is the mid-
point of their closest endpoints, while the intersec-
tion point between a line and a character group
is the position of the character group. Subse-
quently, the neighbors of a line node are sorted
based on proximity to the first or second end-
point, determining which endpoint the neighbor
intersects. This sorting simplifies the identifica-
tion of attached nodes and their number. Using
this information, the relevant calculated intersec-
tion points replace the original endpoint positions.
For a single neighbor, the calculated intersection
point is used; for more than one, the midpoint of
related calculated intersection points is employed.
The sorting information helps determine the atom
type on endpoint nodes, specifically whether it
represents a ’hidden’ carbon or a named structure.
An endpoint with no neighbors or a line neighbor
signifies a ’hidden’ carbon, while one with a char-
acter group neighbor indicates a named structure.
This process transforms the modified MST into a
dual graph (see Fig. 5 (a) and (b)).

Finding Nodes Inside Brackets.

This step is performed using the dual graph and
a dictionary that maps the modified MST nodes
to the dual graph nodes. Note that the modified
MST nodes are bonds with endpoints that cor-
respond with two dual graph atom nodes that
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have an edge. The dictionary is used to map the
crossing bond nodes marked during the bracket
neighbor sorting to the corresponding atom nodes
in the new graph. The edge between the nodes is
marked as a ‘crossing’ edge. Since this is a crossing
bond, one atom node will be inside the bracket’s
bounding box and the other will be outside. The
atom node that is inside the bracket’s bounding
box is marked. A subgraph of the new graph is
made, where the ‘crossing’ edges are filtered out
(see Fig. 5 (c)). The subgraph is then broken
into a list of connected components. The con-
nected component that has the previously marked
node inside it is annotated as the structure inside
the bracket. To deal with the case where there
are no crossing bonds, the inside nodes of the
bracket are used to find which connected com-
ponent is inside the bracket. In this case, the
molecule inside the bracket is already separated
from outside components so the ‘crossing’ edge
step can be removed.

4.4 Translating Visual Graphs to
CDXML

CDXML Nodes and Attributes: We first classify
nodes in the visual graph by node type for use
in the CDXML encoding. The most common
CDXML node types were: (1) Hidden Carbon
Nodes (2), Abbreviation Nodes (3), Atom Nodes,
and (4) Unknown Block Nodes. Each node type
has a corresponding bond information value as
well. To capture the spatial information, visual
graph node locations (see Fig. 1) are also encoded
in CDXML nodes. This ensures that spatial prop-
erties of a molecular diagram used for accurate
SMILES conversion are preserved; for example,
this allows distinguishing between molecules with
different chirality.

Abbreviation Nodes: Abbreviation nodes elide
and name portions of molecular diagrams with-
out losing information, provided that the named
structure is known to the reader. Fig. 1 shows an
abbreviation node NO2, a nitro group with an
external connection available. We used a manu-
ally compiled list of 612 common abbreviations
along with an abbreviation dictionary from RDKit
and ChemDraw for interpretation and then per-
formed CDXML encoding at the atomic level. For
the abbreviation NO2, we insert the full structure
(∗ → N1, N1 → O1, N1 → O2) into the CDXML

as a ‘nested fragment.’ ∗ represents where the
structure can be connected to other structures;
O1, O2 represents two oxygen atoms connected to
the nitrogen N1 through a single and double bond
respectively.

5 Annotated Data Generation
for Visual Graphs

In this section, we introduce a data generation
strategy that addresses the crucial issue of obtain-
ing annotated training data for training a visual
parser, which is essential for parsing molecules
directly from raw images. This data generation
strategy presents a significant contribution to
the community, as it serves as a viable solution
for acquiring annotated training data in scenar-
ios where such data is sparse. Furthermore, the
adaptability of this approach to other application
domains, broadens its potential impact.

Not all documents are readily available in
born-digital form. A substantial number of doc-
uments incorporate molecule representations as
images, devoid of typesetting instructions. As a
result, the extraction of character and graphics
information from such documents is impeded, ren-
dering conventional parsing methods ineffective.
Our ChemScraper system, tailored for parsing
molecule diagrams, faces limitations in process-
ing such documents, prompting the need for an
alternative approach – a visual parser capable
of extracting molecules from raw images. How-
ever, the development of such a visual parser
necessitates a robust training dataset.

A key challenge is the paucity of training data
in the chemical domain with atom and bond-
level annotations, including precise coordinates
and labels. While data is frequently available in
the form of raw SMILES representations, these
representations lack the comprehensive informa-
tion required for training a visual parser. Even
MOL files, although containing some data about
atoms, bond types, and relative atom coordinates,
fall short of providing the exact atom coordinates
from the input images. Moreover, they do not
encompass all primitive labels and coordinates,
restricting themselves to main atoms and exclud-
ing detailed labels and coordinates for primitive
constituents, such as missing labels and coor-
dinates for H and 3 in CH3 This absence of
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# [ OBJECTS ]

# Objects (O): 10

# Format: O, objId, class, 1.0, [primitiveId list]

O, Ln_1, Double, 1.0, 0, 4

O, Ln_2, Single, 1.0, 1

O, Ln_3, Double, 1.0, 2, 3

...


# [ RELATIONSHIPS ]

# Relationships (R): 11

# Format: R, parentId, childId, class, 1.0 (weight)

R, 2_1, O_1, CONCATENATED, 1.0

R, Ln_1, Ln_2, CONNECTED, 1.0

R, Ln_1, Ln_6, CONNECTED, 1.0

...


# [PRIMITIVE FEATURES]

#cc, 0, 10, 0, 71, 98

#cc, 4, 25, 15, 79, 97

#cc, 1, 64, 0, 178, 8

...

a.

CONNECTED CONNEC-
TED

CONNECTED

CONNECTED
Single
Obj6

9

CONNECTED

CONNEC-
TED

CONNECTED

N
Obj7
10CONNECTED
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Obj8
11CONCAT-
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12
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ENATED

Double
Obj5
7 8

Single
Obj3

5

Double
Obj0
0 4

Single
Obj4

6

Double
Obj2
2 3

Single
Obj1

1

b.
Fig. 6: Annotated data generation for Nitrobenzene (C6H5NO2) using visual graph (modified MST)
from Fig. 1 (c) with expansion of concatenated atom nodes. (a) Output label graph (lg) file with Object
(O), Relationship (R) and primitive bounding box coordinates (b) Equivalent connection graph over
atoms/bonds with labels and primitive ids, and edge labels.

detailed data about the visual primitives hampers
comprehensive training.

To overcome these limitations, we devised a
methodology integrated into the ChemScraper
pipeline. In this approach, we employ the Indigo
Toolkit to render PDFs from SMILES repre-
sentations, rather than generating PNG images
directly, as done by previous methods like
MolScribe [29]. These rendered PDFs are then
transformed into 300 DPI images, constituting
the training images for the visual parser. The
crucial step is the annotation of these training
images, a process facilitated by our Symbol-
Scraper [36]. This tool extracts character and
graphics elements, providing detailed information
including labels, coordinates, and additional geo-
metrical properties of the shapes, as mentioned
earlier. ChemScraper leverages these annotations
to extract visual graphs from the images.

For training the visual parser, the final visual
graph produced by ChemScraper is not used.
Instead, we employ an intermediate graph struc-
ture, which captures all visual objects within the
images as nodes and establish connections among
them. To this end, we employ the graph struc-
ture from Fig. 1 (c), illustrated in step 1 of Fig. 3
and expand the merged character (atom) groups
to introduce CONCATENATED edges between charac-
ters as shown in Fig. 6. This comprehensive graph
structure accounts for all primitives and ensures
that the parser can be trained to recognize both
visual features of atoms and bonds as nodes.

Label Graph (.lg) Files. We create label
graph (Lg) files that adhere to the LgEval for-
mat [24, 25] (see Section 3.3). These Lg files
contain ‘Objects’ and ‘Relationship’ entries, along
with primitive coordinates. ‘Objects’ encompass
all primitive groups, comprising atom groups and
bonds, and provide details about the individ-
ual primitives forming them (e.g., individual lines
of bonds, and individual characters of the atom
groups). These objects have corresponding labels
for atom groups (e.g., ‘CH3’, ‘NO2’), constituent
atoms (e.g., ‘C’, ‘N’, ‘O’) or bonds (‘Single’, ‘Dou-
ble’, ‘Triple’, ‘Solid Wedge’, ‘Hashed Wedge’).
The atom groups and bond objects also contain
the primitive IDs of the constituent primitives
(atoms and lines) as shown in Fig. 6 (a). ‘Relation-
ship’ entries define the edge connections between
these objects. It is imperative to note that we
validate the bonds between atoms using the adja-
cency matrix of bond types obtained from the
ground truth SMILES through the creation of an
MOL object using the Indigo Toolkit. This ensures
the creation of accurate label graph files for the
ground truth.

Three types of relationship edges are iden-
tified: CONNECTED, CONCATENATED, and ABSENT.
All edges in the graph carry a CONNECTED label,
except the edges between the expanded char-
acters of atom groups, which are marked as
CONCATENATED. ABSENT labels denote non-existent
edges, which serve as negative examples for train-
ing. These Lg files, in conjunction with the input
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images, facilitate fine-grained training of a visual
parser, enriched with comprehensive information
about the primitives and their connections. Chem-
Scraper allows to generate Lg files and images
from a list of SMILES strings available in the
standard datasets. Our future work will focus on
leveraging these datasets to train LGAP (Line-
of-Sight Graph Attention Parser) [37], originally
designed for parsing mathematical formulas.

The approach outlined for data generation
holds significant potential for broader applica-
bility across various domains. SymbolScraper’s
ability to extract detailed information from born-
digital documents can be leveraged to alleviate the
scarcity of training datasets for neural models in
diverse fields. This approach serves as a valuable
method for addressing the challenge of obtaining
annotated training data in scenarios where manual
annotation is unfeasible, thus making it a valu-
able contribution to the scientific community. Its
versatility allows for potential extensions to other
application domains with similar data constraints.

6 Evaluation

In this Section, we evaluate the accuracy of
our born-digital parser and explore its strengths
and limitations. We also benchmark the system
against existing molecular recognition systems,
but it is important to remember that the Chem-
Scraper parser utilizes different information than
standard image-based visual parsers as input.
Our model produces graph-based outputs stored
in CDXML, or translated to SMILES, but the
CDXML files contain additional visual and stereo-
chemical information missing in standard SMILES
strings.

Datasets. For parameter tuning, we used a
subset of the MolScribe training set, which was
extracted from the PubChem database. For eval-
uation of robustness using different rendering
parameters, we used the USPTO dataset which
contains a list of 5179 SMILES strings that we
convert to PDFs using the Indigo Toolkit. For
benchmarking against other systems, we evaluated
on the public datasets UOB (5,740 molecules) and
CLEF (992 molecules).

Implementation/Systems. Runs were
made on a Ubuntu 20.04 server, with a 64-core
Xeon Gold 6326 (2.9 GHz) CPU and 256 GB
RAM. A run took on average 167 seconds for

the USPTO-Indigo dataset, with an asymptotic
run-time complexity of O(n2), where n is the
number of nodes (PDF character/graphics primi-
tives) in the input graph. A run uses on average
a peak of 182 MB of memory for the USPTO-
Indigo dataset. SymbolScraper is implemented
in Java (based on Apache’s PDFBox), while the
ChemScraper born-digital parser is implemented
in Python, making use of libraries including
Shapely (for 2d geometry), networkx (for graphs
and graph operations), numpy, and mr4mp for
parallelization of parsing and other operations
using map-reduce. The full processing pipeline is
python-based.

6.1 Representations and Metrics

For evaluation, we adopt the common practice of
evaluating molecular structure recognition using
normalized SMILES strings. We also compute the
Tanimoto similarity between molecular fingeprints
describing molecular structure. Finally, we intro-
duce a novel approach, where chemical struc-
tures are represented and compared using labeled
graphs using LgEval library (see Section 3.3). This
approach provides a more direct measurement of
graph differences and concrete insights into the
specific errors made by our parser.

We describe each of the metrics we use with
each of these representations below.

SMILES Strings

ChemScraper CDXML files are translated to
SMILES using ChemAxon’s molconvert tool.
Given that the order of atoms in SMILES can vary
between strings representing the same molecule
(see Section x3.2), we canonicalize both pre-
dicted and ground truth SMILES using the RDKit
library, converting SMILES strings to a canonical
form using a built-in function (CanonSmiles(),
with ignore chiral=False).

Exact Matches are the standard metric for
evaluating molecular diagram structure recogni-
tion. It is effectively the recognition rate based on
SMILES string output.

Normalized Levenshtein Similiarity com-
putes a similarity based on a string edit distance,
i.e., the minimum number of insertions, deletions,
or substitutions needed to convert one SMILES
string to the other [35]. This distance is normal-
ized to [0, 1] based on the minimum and maximum
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number of possible edits (from the string lengths).
This value is subtracted from 1 to produce a
similarity metric. We report average normalized
Levenshtein similarity over a test set.

Limitations. SMILES string-based evalua-
tion metrics have inherent limitations for evaluat-
ing molecular formula parsing. Molecular formulas
are most naturally represented as graphs, where
atoms and bonds have well-defined relationships
and spatial arrangements. In contrast, SMILES
representations are linear sequences of characters
that describe graph structure, but SMILES char-
acters have no direct connection with the atoms
and bonds present in an input image (i.e., where
individual atroms appear in the diagram is not
represented).

Recognizing these limitations, we have turned
to additional graph-based evaluation metrics to
assess accuracy and diagnose errors systemati-
cally. A Levenshtein distance only counts oper-
ations to convert SMILES strings, and the edit-
ing sequences may be non-unique. Ultimately,
SMILES-based metrics do not identify which spe-
cific parts of the input were recognized incorrectly,
or how.

overcome the shortcomings of string-based
metrics and obtain a more fine-grained and com-
prehensive performance evaluation.

Molecular Fingerprints

Molecular fingerprints are bit vectors representing
neighboring structures of nodes. We use RDKit
fingerprints, a topological representation based on
the Daylight fingerprint7 that encode paths of the
molecule graph by varying the path length in a
given range, and then constructing a fixed-size
binary vector indicating which structures (paths)
are present in a given molecule[3]. In our case, the
fingerprint vectors have a size of 2048, and path
lengths used range from 2 to 7, the default values
provided in RDKit.

Tanimoto Similarity. The Tanimoto coeffi-
cient [41] measures how similar 2 sets A and B
are by computing their intersection over union,
that is, the ratio between the number of common
objects and the sum of all the objects in both sets.
For the molecular fingerprints which are binary
vectors, the calculation of the Tanimoto similarity

7https://www.daylight.com/

between 2 fingerprint vectors u⃗ and v⃗ is given by:

Ts(u⃗, v⃗) =
u⃗ · v⃗

|u⃗|+ |v⃗| − u⃗ · v⃗
(1)

Tanimoto similarity provides additional struc-
tural information over the Levenshtein distance.
However, while this analysis is structural, the
fingerprints are computed from paths over struc-
tures represented in SMILES strings, somewhat
abstracts the complete structure of a molecule.

Labeled Graphs

LgEval [24, 25] provides a systematic approach
for graph-based evaluation of molecular recogni-
tion systems, providing an evaluation of structure
recognition directly at the primitive (e.g., char-
acter), object (e.g., label), and relationship (e.g.,
bond) levels in graphs.

Label graphs offer a mechanism to calculate an
absolute difference between two structural repre-
sentations, allowing for the assessment of discrep-
ancies even when the segmentation of input primi-
tives (e.g., a series of atom characters) into objects
(e.g., an atom group) differs, and even when some
primitives are missing in one of the two interpre-
tations. This disparity is directly quantified by
contrasting node and edge labels and computing
associated Hamming distances, which tally the
mismatches in node and edge labels. It is impor-
tant to note that input primitives are considered
to be a fixed and indivisible; this requires that
the input matches or over-segments target objects
(e.g., atoms, bond line groups). Fortunately this
is naturally the case for our PDF character and
graphic primitives produced by SymbolScraper.

The LgEval library also offers visualization
tools for errors in label graphs, at both the prim-
itive and object levels (the graph-based confusion
histogram tool, confHist). This tool facilitates
the examination of specific errors, encompassing
missing relationships and nodes, segmentation dis-
crepancies, symbol and relationship classification
inaccuracies - essentially, any classification, seg-
mentation, and relationship error. These errors are
made easily accessible through HTML pages.

We report detection metrics from LgEval
as f-measures at the symbol (atom/node), rela-
tionships (bonds/edges), and molecule levels for
chemical structure graphs. These entity detection
measures are denoted by DET. We also report
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f-measures for correctly labeled and classified enti-
ties of each type, denoted by +CLASS. These two
groups report structural correctness for unlabeled
(DET.)and labeled (+CLASS ) graphs.

6.2 SMILES-Based Evaluation

Parameter tuning. From Table 1 we tuned the
parameters that have a higher influence on the
results (according to our experiences developing
the tool). We defined an exploration range (which
is indicated next to each parameter in the fol-
lowing listing between {}), choose a default value
(which is indicated in bold in the following list-
ing) and explored around that range; for each
of the parameters, we fix the default values of
the remaining parameters and vary the current
parameter, we selected the highest of these com-
bination as final values. The final values selected
for all the parameters are indicated in Table 1.

These parameters, the order in which they are
searched and value ranges are:

REMOVE ALPHA {2.0, 2.2, 2.4, 2.6, 2.8, 3.0},
NEG CHARGE Y POSITION {0.1, 0.2, 0.3, 0.4, 0.5},
NEG CHARGE LENGTH THRESHOLD {0.3, 0.4, 0.5, 0.6},
Z TOLERANCE {1.5, 1.6, 1.7, 1.8, 1.9, 2.0},
CLOSE NONPARALLEL ALPHA

{1.5, 1.6, 1.7, 1.8, 1.9, 2.0}, and
CLOSE CHAR LINE ALPHA {1.5, 1.6, 1.7, 1.8, 1.9, 2.0}.

We selected 1, 000 molecules from the
MolScribe training set, which was extracted from
the PubChem database. We created a dataset
of 9, 000 molecules by rendering the mentioned
1, 000 molecules with different parameter combi-
nations of the Indigo Toolkit. The resulting values
of this tuning are used in the consequent runs.

Effect of rendering parameters. Since the
datasets we are using contain just SMILES strings,
and we need a PDF as input, we use the Indigo
toolkit to generate PDFs from those strings. To
test the robustness of our parser, we used different
PDF rendering parameters, that affect how the
molecules look as shown in Fig. 7. The parameters
used are:

• relative-thickness: Boldness of all
graphic and text objects in the molecule.
Using the values {0.5, 1, 1.5}. The default is
1.

• render-implicit-hydrogens-visible:
Show or not implicit hydrogens, {True,
False}. The default is True.
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Fig. 7: Same molecule with different render-
ing parameters (Indigo toolkit). Each sub-caption
indicates the label mode, whether implicit hydro-
gens are shown, and relative thickness, respec-
tively. Parameters in 7c are the defaults. Chem-
Scraper parses all four versions correctly.

• render-label-mode: Which labels of
the atoms to show,{none,hetero,terminal-
hetero,all}. all shows all the atoms in
the molecule, terminal-hetero shows het-
eroatoms, terminal atoms, atoms with
radical, charge, isotope, explicit valence, and
atoms having two adjacent bonds in a line,
hetero is the same as terminal-hetero, but
without terminal atoms and none does not
show any label 8. We omit the none option
because it leads to ambiguous molecules.
The default is terminal-hetero.

This produced a total of 18 combinations for ren-
dering. We evaluated our parser in each of them
for the Indigo dataset (USPTO SMILES rendered
by Indigo Toolkit.

Fig. 8 shows how the different types of atom
labels affect the performance of the parser. We can
observe that having all the atom labels performed
worse, this is because the more dense becomes the
molecule, the more probable it is for the parser to
connect atoms incorrectly.

Fig. 9 shows the effect of rendering molecules
with different thicknesses. There is a tendency
that the lower the thickness, the better. This is
again related to the density of the molecule; as

8https://lifescience.opensource.epam.com/indigo
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shown in Fig. 7, the lower thickness makes graph-
ical objects that must not be connected farther
from each other, decreasing the probability of
incorrectly connecting atoms.

Initially, the parser struggled with these
parameter variations, such as very thick lines,
leading to a performance drop to 0% exact
matches in certain conditions. This was because,
previously, for closing edges in the MST, we used
multiple parameters linked to a percentage of the
longest bond lines, which varied with thickness as
seen in Fig. 7. To address this, we reevaluated
and replaced such parameters by incorporating
information from the MST, such as node degree,
nearest neighbors, and structural attributes. This
shift not only enhanced the parser’s resilience but
also significantly increased the number of exact
matches – from 0% to 80%, demonstrating its
adaptability to diverse and challenging molecule
rendering parameters.

6.2.1 Benchmark

To compare against other systems, we used
the default rendering parameters of the Indigo
Toolkit. It is worth mentioning that we obtained
additional exact matches using a different com-
bination of rendering parameters, but we com-
pared using the defaults for fair comparison. Table
2 compares ChemScraper and existing molecule
parsing models. In part, because we have more
information available (from PDF instructions)
than other benchmark models, we outperform
them. This is a good sign that our model can be
used for data generation to enhance existing and
future visual parsers working from raster images.
Note that the percentage of exact matches in the
CLEF-2012 dataset is lower, in part because 71
SMILES could not be rendered into PDF by the
Indigo Toolkit. Something similar happened with
the USPTO (Indigo) dataset, where 15 SMILES
strings were empty.

6.3 Graph-Based Evaluation Results

Qualitative & Quantitative Analysis. For
fine-grained evaluation of ChemScraper, we
require molecule graph representations for both
ground truth and the predicted molecules. Given
we have already created chemical structure graphs
subsequently converted to CDXML format, we can

Label Type

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

terminal-hetero hetero all

Inverse Normalized Levenshtein Distance Tanimoto Similarity

Fig. 8: Effect of using different label types. This
run is made using the default parameters of Indigo
(render-implicit-hydrogens-visible to True
and render-relative-thickness to 1).

Relative Thickness

97.00%

98.00%

99.00%

100.00%

0.5 1 1.5

Inverse Normalized Levenshtein Distance Tanimoto Similarity

Fig. 9: Effect of using different thicknesses. Higher
thickness leads to more parsing errors. This run
is made using the default parameters of Indigo
(render-implicit-hydrogens-visible to True
and render-label-mode to terminal-hetero).

readily employ these graphs for evaluation. How-
ever – it is important to note that the graph
utilized for evaluation slightly differs from the one
used in the data annotation process for creating
visual parser training data.

The predicted graph corresponds to the
final stage in the parsing algorithm, shown in
Fig. 1 (d) generated during Step 2 of the pars-
ing process (see Fig. 3). This graph assumes
the representation of atoms or atom groups
as nodes, these nodes are portrayed as edges
with associated bond types. The bond type
each bearing an atom or superatom label, such
as N of NO2, and bonds between could be
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Table 2: SMILES-based benchmarking of ChemScraper against other molecule parsing models. Percent-
ages shown are for exact matches in SMILES strings. Note: ChemScraper is evaluated on synthetic data,
and uses information from PDF; other systems parse from pixel-based raster images (e.g., PNG).

Synthetic Real

Models Indigo (5719) CLEF-2012 (992) UoB (5740)

Rule-based
MolVec 0.9.7 95.40 83.80 80.60
OSRA 2.1 95.00 84.60 78.50
Imago 2.0 - 68.20 63.90

Neural Network Img2Mol 58.90 18.30 78.18
DECIMER 69.60 62.70 88.20

Graph Outputs

OCMR - 65.10 85.50
SwinOCSR 74.00 30.00 44.90
Image2Graph - 51.70 82.90
MolScribe 97.50 88.90 87.90
MolGrapher - 90.50 94.90

Synthetic (SMILES → PDF Using Indigo Toolkit)

ChemScraper
(PDF render errors) (15) 97.90 (71) 84.27 (0) 95.45
*Skipping render errors 98.16 90.77 95.45

Table 3: LgEval Metrics for two different runs for the Indigo Dataset (5719 molecules). Shown are f-
measures (the harmonic mean, 2RP/(R+P) for Recall and Precision) for correct detection, and correct
detection+classes (labeling) for symbols, relationships, and complete molecule graphs.

Rendering Parameters Symbols Relationships Molecules

Runs label
mode

implicit
hydrogens
visible

relative
thickness

Det. +Class Det. +Class Struct. +Class

Default terminal-
hetero

true 1 99.97 99.97 99.92 99.53 98.62 88.32

Weakest all true 1.5 99.49 99.39 98.54 98.50 79.86 79.33

Object Targets Primitive Targets and Errors

1 1857 errors

CC
SingleSingle

Targets

1
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CC
SingleSingle

1114 errors

CC
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ABSEC

2 436 errors

CC
DoubleDouble

Targets
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CC
DoubleDouble

260 errors

ABSEC

94 errors

CC

3 189 errors
Targets

(a) (b)

Object Targets Primitive Targets and Errors
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Targets

1 584 errors

CC
H Wedge
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CC
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3 errors

CC

2 103 errors

CC
SingleSingle

Targets

1 103 errors

CC
SingleSingle

59 errors

CC

33 errors

CABSENT 11 errors

CC
H WedgeS Wedge

3 85 errors
Targets

Fig. 10: Confusion Histogram results showing the most frequent relationship errors for (a) Default run
and (b) Weakest run in Table 3

one of the following: {Single, Double, Triple,

Solid Wedge, Hashed Wedge}. To construct a
comparable ground truth graph, we leverage the
Indigo Toolkit from a MOL object using the ground
truth SMILES representation. We then extract the
graph, including atom coordinates, labels, and an
adjacency matrix capturing bonds between atoms.
This extraction is facilitated using MolScribe
[29] with minor modifications. The adjacency

matrix employs values ranging from 1 to 6 to
signify bond types {Single, Double, Triple,

Aromatic, Solid wedge, Hashed wedge}. It is
noteworthy that the solid wedge and hashed wedge
bonds are functionally identical, but oriented in
opposite directions: for example, if there exists a
solid wedge bond from ‘C’ to ‘N’, there will be
a corresponding hashed wedge bond from ‘N’ to
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‘C’. All other bonds are undirected. We estab-
lish correspondences between the nodes in the two
graphs using atom coordinates extracted from the
Indigo Toolkit (ground truth) and Symbol Scraper
(predicted graph). Minor discrepancies in atom
coordinates are resolved using minimum distances
between corresponding atom pairs.

Finally, we create object-relationship ((OR)
label graph (Lg) files as described in Section 3.3.
In this context, ‘Object’ entries represent individ-
ual atoms or atom groups, and the ‘Relationship’
entries denote bond edges with bond type labels
between the atoms, as opposed to specifying the
type of connections between visual elements.

The metrics in Table 3, illustrate a disparity
the molecule recognition rate (last column) and
exact SMILES matches shown in Table 2. This
arises because SMILES string-based metrics lack
sensitivity to direction and errors for 3D bonds,
such as hashed and solid wedge bonds. In this
way, SMILES exact matches may be misleading
in terms of identifying correct molecular struc-
tures. In contrast, our graph-based metrics readily
identify and highlight such errors. For example,
the first row of Fig. 10 (a) shows hashed wedges
incorrectly identified as single bonds.

LgEval played a significant role in identifying
errors during our development. Through an anal-
ysis of confHist results, we discovered a notable
issue: our system incorrectly predicted the direc-
tion of solid wedges, causing numerous errors
where solid wedges were mistakenly identified as
hashed wedges. The insights from confHist allowed
us to locate and address the specific part of our
system with a bug related to solid wedge direc-
tion. This example highlights the utility of LgEval
in conducting fine-grained analyses and improving
system accuracy. This capability sets LgEval apart
from SMILES-based metrics, which yield identical
exact matches despite this underlying issue.

Table 3 show a large decline in molecule recog-
nition rates for the weakest run, despite only a
1% reduction in relationship-level metrics. This is
mainly due to the intricate network of edges and
relationships, particularly in large structures with
rings. Even a 1% error in relationships, as seen in
the Indigo dataset with 382,058 target relation-
ships for 5,719 molecules, substantically affects
accuracy. In confHist (Fig. 10), prevalent errors for
the default run involve predicting hashed wedge
bonds as single bonds or overlooking them, with

occasional missing single bonds. The weakest run
exhibits a notable increase in errors, particularly
in detecting single and double bonds. This unex-
pected difficulty with supposedly easier-to-detect
bonds is attributed to the inherent complexity
of molecules in the weakest run, featuring short
bond lines and a compact structure (See Fig. 7
(b)). Such cases pose challenges for graph transfor-
mation algorithms in accurately detecting bonds
or establishing correct connections between enti-
ties, emphasizing the need for more complex visual
deep neural-based models.

7 Conclusion

In this paper, we introduce the ChemScraper
born-digital molecular diagram parser, along with
an improved tool for extracting characters and
graphics from PDF (SymbolScraper) and applying
our parser to data generation. Conversion of the
molecule structure graphs to CDXML was chosen
as an intermediate format as it can be ingested
by common chemical drawing tools (ChemDraw,
Marvin) as well as be converted to other machine-
readable formats (SMILES, MOL, and InChI).

Our graph-based evaluation metrics, coupled
with the use of LgEval tools, offer a detailed
assessment of our parser’s performance. This
methodology extends beyond chemical diagrams,
proving valuable for parsers handling diverse
graph-based outputs, such as charts and road net-
works. The current limitations exist in tackling
visually intricate molecules and ensuring robust-
ness across varying rendering parameters, as well
as parsing directly from raw images. These chal-
lenges underscore the need for enhanced visual
parsers. Our annotated data generation tool pro-
vides a resource for training sophisticated visual
parsers, and we plan to leverage it to train our
visual parser for parsing raster images.
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