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Abstract
We present a multimodal search tool that facilitates retrieval of
chemical reactions, molecular structures, and associated text from
scientific literature. Queries may combine molecular diagrams, tex-
tual descriptions, and reaction data, allowing users to connect dif-
ferent representations of chemical information. To support this,
the indexing process includes chemical diagram extraction and
parsing, extraction of reaction data from text in tabular form, and
cross-modal linking of diagrams and their mentions in text. We
describe the system’s architecture, key functionalities, and retrieval
process, along with expert assessments of the system. This demo1
highlights the workflow and technical components of the search
system.

CCS Concepts
• Information systems→Chemical and biochemical retrieval.
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1 Introduction
The scientific literature contains vast amounts of chemical knowl-
edge represented in textual descriptions and diagrams. Roughly
speaking, molecular and reaction diagrams represent the structure
and relation of compounds participating in reactions, while the
main text and text labels on reaction diagram entities describe how
and why reactions occur (e.g., at what temperature, the yield of a
product molecule, pertinent molecular properties, etc.). As a result,
the full story of a reaction is often told using a combination of text
and diagrams.

Traditional Chemical Information Retrieval (CIR) systems and
commercial platforms such as SciFinder®2 and Reaxys®3 provide
extensive text-based and structural search capabilities. However,
these systems do not explicitly associate molecular figures with
their textual descriptions, making it difficult to retrieve reactions
found in diagrams with their details and context provided in text.
Existing systems are also designed to return individual compounds
or full documents as results, rather than returning text passages
where reaction descriptions are found. These limitations present
challenges for chemists, patent examiners, and researchers seeking
to retrieve relevant compounds, reactions, or synthesis protocols
along with their contexts efficiently.

To address these challenges, our system supports direct retrieval
of relevant passages, which are returned along with their associ-
ated molecular structures. This includes structures extracted from
molecular diagrams and referenced in the text by common name
(e.g., ‘chromene’), IUPAC name [19], or figure identifier (e.g., mole-
cule ‘34’, or molecule ‘4b’). Automatically extracted reaction records
are also generated from passages using ReactionMiner [23], and
provided alongside passages and their associated compounds. The
reaction records enable researchers to explore linked reaction steps.
Passages may be searched using text queries, molecular structure
queries in SMILES (Simplified Molecular Input Line Entry System)
strings [22], or a combination of the two. SMILES is frequently
used in chemoinformatics, and can be readily generated by a num-
ber of commonly used drawing tools (e.g., ChemDraw or Marvin).

2SciFinder® : https://scifinder.cas.org/
3Reaxys® : https://www.reaxys.com/
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This multimodal search model facilitates direct navigation between
reaction text, associated molecule diagrams, and extracted chem-
ical entities. The system supports text-based search using BM25,
and SMILES-based molecular search using structural similarity and
substructure matching provided by RDKit4.

Related Works. Early CIR systems such as ChemXSeer [12]
focused on extracting and indexing chemical names from tables in
PDFs, in order to allow users to search bymolecule name or formula.
Later efforts, such as TREC-CHEM [9], introduced the concept of
document-level retrieval for chemistry-specific tasks, curating a
dataset of patents and employing manual relevance assessments to
evaluate retrieval effectiveness. Recent advances in deep learning
have focused on cross-modal learning to align structured molec-
ular representations with textual descriptions. Both Text2Mol [3]
and MoleculeSTM [7] adopt joint learning approaches that em-
bed chemical structures and text into a shared embedding space,
facilitating retrieval across modalities. Text2Mol employs graph
neural networks (GNNs) [15] and perceptron models to predict
the most appropriate SMILES representation given a textual query,
addressing the task of molecule retrieval from natural language
descriptions. Similarly, MoleculeSTM is designed for structure-text
retrieval, retrieving chemical structure from textual descriptions
and vice versa by leveraging a multimodal transformer within a con-
trastive learning framework. However, these systems focused on
document-level indexing rather than passage-level search, whereas
our system enables structured retrieval by directly linking extracted
molecular diagrams, textual mentions, and reaction descriptions.
OpenChemIE [4] extracts reaction data from text, tables, and figures
using modality-specific models, similar to our approach of combin-
ing text-based reaction extraction and molecular diagram parsing.
However, unlike OpenChemIE, our system integrates extraction
with passage-level retrieval.

Our demonstration showcases how structured indexing and link-
ing of chemical information across text and figures can improve
chemical information retrieval and provide a more comprehensive
and flexible search framework for chemists and researchers.

2 Indexing Extracted Compounds and Reactions
In our system, textual and graphical content are processed through
two parallel pipelines, whose outputs are later used to build a unified
index of chemical entities, paragraph texts, and reactions.

Text mining for extracting reaction information.We em-
ploy ReactionMiner [23], a pipeline that processes text extracted
from PDF documents to isolate and categorize reaction-related con-
tent. First, the text is segmented into reaction-related sentences
through product-indicative keywords and topic modeling [2] for
defining the contextual boundary. A large languagemodel, LLaMA3.1-
8b [5], fine-tuned with LoRA [6], is then used to identify relevant
chemical entities such as reactants, products, and catalysts, along
with key conditions (e.g., temperature, reagents, or solvents). Each
reaction mention is associated with segmented text bounding boxes
in the PDF (see Figure 1), enabling direct navigation to the under-
lying paragraph. By grouping identified mentions into coherent
reaction units, a structured record for each reaction step present in
the text is established.

4https://www.rdkit.org

Extracting SMILES from document text. In addition to the
reaction records extracted by ReactionMiner, we also extract indi-
vidual compounds from document text. These additional SMILES
annotations ensure that compounds mentioned both inside and
outside of reaction descriptions can be retrieved through the search
interface. For indexing compounds in text, we first use PyTesseract
to convert document page images to text, which is then passed to
ChemDataExtractor2.0’s [11] Chemical Named Entity Recognition
(CNER) system to identify molecule names. Each recognized name
is converted into a SMILES string via OPSIN [8], and any passage
containing at least one valid SMILES is retained for indexing.

Molecular diagram extraction and parsing.We use YOLOv8,
an improved version of scaled YOLOv4 [21], for detecting molec-
ular regions in documents. We then employ ChemScraper [16] to
parse molecular diagrams from detected PDF regions (see Figure 1)
through two complementary pipelines: a born-digital approach
for vector images representing characters and geometric objects,
and a visual parsing [18] approach for pixel-based raster images.
In the born-digital parser, SymbolScraper [17] accesses low-level
PDF drawing commands to extract lines, polygons, and characters
directly from the PDF. The visual parser works on raster images,
applying the Line Segment Detector (LSD) [20] and watershed al-
gorithm to detect line primitives and text regions. Together, these
methods yield a set of graphical elements (e.g., atoms, bond lines,
named functional groups) and their local connections.

ChemScraper then constructs a visual structure graph using a
Minimum Spanning Tree (MST) and rewrite rules for born-digital
diagrams and a segmentation-aware, multi-task neural network for
raster images. The visual graph is then converted to a molecular
graph, where bonds become edges and implicit carbon atoms are
inferred from line intersections. The final molecular graph is stored
in CDXML format to retain both chemical and visual structure. This
format is converted into SMILES for indexing.

Compound-Passage Linking and Multimodal Indexing.
Once text-based reaction information and text and diagram-based
molecular structures are extracted, they must be unified into a cohe-
sive representation that supports flexible querying. There are two
types of passages in our system: (1) those extracted by Reaction-
Miner (boxed text in Figure 1), and (2) those extracted from general
text regions using PyTesseract (unboxed).

For passages extracted by ReactionMiner, relevant text fields in-
clude reactants, products, catalysts, and yields. We focus on linking
the reactants and products in reaction records with their corre-
sponding molecular diagrams using two approaches: 1. Token-based
text matching: Text mentions of diagram labels for reactants and
products are identified using regular expressions, and then matched
with the nearest diagram text label by a normalized Levenshtein
similarity ratio5, ensuring minor variations in naming do not pre-
vent linkage. An example is shown in red in Figure 1, where ‘com-
pound 5’ is matched with the diagram labeled ‘5.’ 2. SMILES-based
fingerprint matching: The text tokens are first processed through
ChemDataExtractor2.0 [11] and OPSIN [8], following the same ap-
proach described earlier for non-reaction text, while SMILES from
diagrams are extracted by ChemScraper [16]. Each SMILES repre-
sentation undergoes molecular fingerprinting, producing a binary

5https://rapidfuzz.github.io/Levenshtein/levenshtein.html#ratio

https://www.rdkit.org
https://rapidfuzz.github.io/Levenshtein/levenshtein.html#ratio
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and commercially available phenylboronic acid provided
Lansiumamide A.

As part of our research program aimed to develope novel
hybride molecules,[23] considering above difficulties like the
geometry, preparation of catalyst and multiple steps, we have
developed new conventional synthetic protocol for the prepa-
ration of natural products (Lansiumamide A & Alatamide (cis-
isomer)) in the laboratory. Further, these two natural products
are linked with phenylalanine through C!C bond to provide
the new hybrid molecule and here in we wish to report our
initial result.

Results and Discussion
Initially we started our synthesis by taking amide 1 as starting
material to get N-formyl amide by using reported method
(Scheme 2).[24] Thus compound 3 was reacted under Wittig
reaction condition with (Bromomethyl)triphenylphosphonium
bromide (Compound 4) in the presence of KOtBu as base to
afford compound 5. However, the reaction was not much
successful, so, we started exploring various methods for the
preparation of compound 6a and 4b (Scheme 3&4). To design
and validate the synthetic scheme 3 & 4, we initiated the

synthesis by using commercially available trans-cinnamic acid
(1a) and Benzoyl chloride (1b).

Subsequently, compound 1a was treated with oxalyl
chloride in DCM solvent at ambient temperature to obtained
acid chloride (2a). The compound 2a was combined with the
blend of N-vinyl formamide (3a), Et3N as well as a catalytic
amount of DMAP in DCM at 0 0C and further stirring at RT for
2 h to provide compound 4a and it was forwarded to next step
as such.

Afterwards, the deprotection of formyl group of compound
4a was acquired by employing n-propylamine in DCM at room
temperature. The compound 5a (Scheme 3) was purified by
silica gel column chromatography and well characterized by
1HNMR & LC-MS. The characteristic terminal alkene protons of
compound 5a were observed at δ 4.73 & 4.39 as doublet in
1HNMR. Further, compound 5a was subjected to bromination
reaction by employing N-bromosuccinimide in DCM solvent at
room temperature, however an expected yield was not
obtained and many side products were obseved. Therefore we
modified the reaction condition by taking 1 equ. of N-
bromosuccinimide as well as 1.1 equ. of Et3N at 0 0C which lead
to a higher yield of compound 6a. Thus, following these
reactions, it is significant to mention that the formation of any
di-brominated compound was not observed. The 1HNMR
spectrum of the product of the bromination of compound 5a
showed a doublet at δ 7.79 (J=15.20 Hz), which is character-
istic of an alkene proton adjacent to a nitrogen atom.[22]

Further, several conditions of Suzuki coupling reactions
with compound 6a and phenylboronic acid (7a) to obtained
the Lansiumamide A (8a) which did not provide much success.
We used Pd(dppf)Cl2/K3PO4/Dioxane:H2O/70 °C, Pd(PPh3)Cl2/
Cs2CO3/Toluene:H2O/70 °C conditions however we did not
observed any product formation. When the reaction was

carried out under non-aqueous conditions in THF at 70 °C,
using Pd(PPh3)4 and K2CO3, a substantial yield (40%) ofScheme 2. Initial Attempted Synthesis of Lansiumamide A- Amino acid

hybrid.

Scheme 3. Synthesi of Lansiumamide A-Amino acid hybrid.
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Figure 1: Text/diagram compound extraction and compound–
passage linking. Two passage types are shown: (1) reaction
passages from ReactionMiner (2 boxes) and (2) a single text
passage containing both extracted compounds. Highlighted
text denotes extracted chemical entities: pink for mentions
in molecular diagrams, yellow for unmatched mentions.
Matches come from (1) Text matching via Levenshtein dis-
tance and (2) SMILESmatching viaTanimoto Similarity. High-
light colors (e.g., orange and blue) indicate molecules & reac-
tion text linked to the same reaction passage.

vector encoding the molecular graph’s connectivity patterns. To
determine similarity, we compute the Tanimoto Similarity [1] mea-
suring the overlap between fingerprint vectors, giving a similarity
score between 0 and 1. The diagram with the highest Tanimoto
Similarity score with a passage SMILES are linked. An example is
shown in blue in Figure 1, where ‘N-formyl amide’ is matched with
the diagram labeled ‘2.’ If a compound can be linked by both strate-
gies, the strategy with the higher score between the normalized
Levenshtein similarity ratio and the Tanimoto Similarity is chosen.

In the final index, passages are annotatedwith associated SMILES
and reaction entities. This enables retrieval of specific compounds
as well as reaction-related information, linkingmolecular structures
to their reaction context. During indexing, IUPAC names in text
are also tokenized into constituent groups [13] to improve retrieval.
For example, an IUPAC name, ‘N-((E)-2-bromo-2-phenylvinyl)-
cinnamamide’ would be tokenized as ‘N E 2 bromo 2 phenyl vinyl
cinnamamide’.

3 Multimodal Search: Suzuki Coupling Papers
Our system supports three primary search models based on dif-
ferent query types: text search, molecular structure/substructure





 

Figure 2: Multi-modal search results for a text and Reaction
SMARTS query. Results are organized by document, with
matched passages linked to extracted reactions, molecular
structures, and highlighted text mentions. Key reaction de-
tails, including reactant (‘98’) and product (‘99’) in both text
and diagrams, along with their predicted SMILES representa-
tions, are displayed. Users can navigate directly to relevant
sections within each document, with highlighted passages
indicating the corresponding matches.

search (from SMILES), and multimodal search combining text and
molecular queries. Text search is handled using BM25 [14] as imple-
mented in PyTerrier [10], allowing users to search for compounds,
reaction conditions, or chemical properties in text. Molecular struc-
ture search is provided by RDKit, enabling both exact molecule
matching and substructure searching. Multimodal search integrates
results from both models, by re-ranking results to prioritize pas-
sages that contain both textual and molecular matches.

For this demonstration, we indexed seven research papers and
six supplementary information documents related to Suzuki cou-
pling reactions, provided by chemists at the University of Illinois.
The dataset includes a total of 1282 extracted passages, out of which
538 are indexed (passages without links to a reaction or compound
name are removed), 383 unique SMILES string, and 219 extracted
reactions. These passages are linked to diagrams and SMILES as
described in the previous section. Molecule SMILES are also search-
able within detected chemical entities in passages and reactions.
This structured linking allows users to retrieve molecular and re-
action information, whether entities appear in text descriptions or
are represented as molecular diagrams.

Molecular SMILES and SMARTS Search. Query SMILES and
candidate SMILES in the index are converted into fingerprint vector
representations using Morgan Fingerprinting (2048 bits), and are
ranked using Tanimoto Similarity, described earlier. The system
also accommodates structured queries specifying entire chemical
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reactions using Reaction SMARTS (SMILES Arbitrary Targets Speci-
fication) notation. This format extends SMILES strings to include ‘>’
separating reactants, reagents, and products, while ‘.’ separates indi-
vidual SMILES compounds within each category, as seen in Figure 2.
To process these queries, SMILES compounds are extracted from
the SMARTS string, and each is matched against indexed molecular
structures and reaction passages.

This allows retrieval of passages describing reactions described
in SMARTS, while also providing access to details provide in Reac-
tionMiner records linked to passages. Information such as reactants,
products, catalysts, reaction conditions, and temperature are pre-
sented for retrieved passages. This enables users to search for entire
reactions rather than just isolated compounds, improving retrieval
of contextually relevant reaction information.

Multimodal Search. For multimodal queries, containing both
text and SMILES (or Reaction SMARTS), as shown in Figure 2, the
initial SMILES candidates are obtained using Sub-structure search.
We find that including all possible sub-structures as valid candi-
dates for re-ranking text candidates leads to better performance
as Tanimoto Similarity can be unpredictable for very specific in-
formation needs when combined with text. If multiple SMILES are
provided, the retrieved passages for each individual SMILES query
are aggregated. Results from text-based and SMILES-based retrieval
are combined. A fusion step adjusts rankings to prioritize passages
containing a higher number of matched SMILES. Retrieved pas-
sages are re-ranked based on their BM25 text relevance score and
the presence of SMILES matches.

Reaction Navigation. The system also provides a dedicated
reaction navigation feature for each retrieved document. When a
user selects a passage, they can inspect all extracted reactions from
the associated document in a structured list, with each reaction en-
try pointing to the relevant PDF page and bounding-box highlights,
as shown in Figure 2. This approach lets users explore multiple
reaction mentions in context, making it easier to follow complex
procedures, compare alternative synthetic routes, or identify recur-
ring reagents and intermediates within a single publication.

4 Expert Evaluation by Chemists
To evaluate the system’s effectiveness for chemists, we conducted
an expert assessment with researchers at the University of Illi-
nois. The system effectively retrieved relevant chemical informa-
tion, linking molecular diagrams and text-based reaction details
to chemical names or SMILES queries. For example, as shown in
Figure 2, a multi-modal search with the text query ‘Burke group’
and a Reaction SMARTS string successfully retrieved passages with
relevant reactions matching the SMILES query, which were associ-
ated with the ‘Burke group’, as shown in the highlighted text and
corresponding reaction diagrams displayed below the document
image. Chemists found the ability to click on molecule ‘cards’ and
navigate directly to the corresponding section in the document
particularly useful. The structured reaction output captured key
experimental details such as yield, catalysts, solvents, and temper-
ature, enhancing the accessibility of reaction data. The reaction
and molecule cards serve as a structured extractive summary of
the paper, while also providing navigation links to their original
context. Note that the ‘Reaction 3’ in Figure 2 does not show these

additional details as they were not available in the text. Notably,
the system retrieved derivatives of a queried molecule, such as
‘benzo[b]thiophen-2-ylboronic acid,’ which was relevant to the
SMILES query ‘C1=CC=C2C(=C1)C3=CC=CC=C3S2’ (dibenzothio-
phene) but not explicitly searched for. Overall, the chemists were
able to find the information they were hoping for, and the retrieved
results were useful for their research.

While reaction details were generally well extracted, experts rec-
ommended incorporating additional metadata such as ‘equivalents’
and mol% of catalysts, which are essential for exporting data to
electronic lab notebooks. When using a combination of text and
SMILES queries, users found it challenging to determine whether
retrieved results were more influenced by text-based or structure-
based matching, suggesting a need for greater transparency in the
effect of text vs. SMILES on ranking. Additionally, filtering options
to view reactions, molecules, and text separately would improve
usability, allowing chemists to focus on the most relevant data. An-
other key area for improvement is enhanced diagram-text linking,
as some extracted text mentions were not associated with their
corresponding molecular diagrams. Addressing these issues would
further enhance the system’s utility for chemical research.

5 Conclusion and Future Work
This work presents a multimodal search system that integrates text
and molecular structure retrieval, enabling passage-level search
with structured linking between chemical entities, molecular di-
agrams, and reaction descriptions. By combining BM25 for text,
RDKit-based molecular similarity search, and a fusion mechanism
for multimodal queries, our system improves access to chemi-
cal knowledge in scientific literature. The expert evaluation with
chemists demonstrated the system’s usability, with researchers suc-
cessfully retrieving relevant chemical information, including useful
molecular derivatives and structured reaction details.

Future work will focus on enhancing retrieval effectiveness with
dense embeddings and cross-modal search, leveraging transformer-
based models to improve ranking and semantic matching across
text and molecular representations. While the system currently
matches chemical names to diagrams via SMILES translation, in-
spired by Text2Mol [3], we aim to explore query expansion within
an aligned multimodal embedding space. This approach would
expand text queries to incorporate corresponding molecular dia-
grams or SMILES representations and extend SMILES queries to
include relevant text-based descriptors, improving retrieval flexibil-
ity. Additional directions include scaling the system to index larger
collections and integrating external chemical databases, and refine
filtering mechanisms to improve user experience. A more mature
version of our system may find use in chemical research, industry,
and patent analysis, reducing time spent on literature review and
supporting efficient retrieval of structured chemical information.
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